

Solutions for Tasks 1-11

ChE-437

Prof. Dr. Manfred Zinn

manfred.zinn@hevs.ch
manfred.zinn@epfl.ch

Task 1

You have prepared a preculture (100 mL) in the same medium as the batch medium you plan to use in the bioreactor. Ideally, the OD₆₀₀ should be 0.1 (see lecture Part 1).

a) How much do you need to inoculate in the bioreactor that contains 2.5 L of sterile medium?

The final OD₆₀₀ of the preculture is 4.1.

b) What is the percentile increase of the volume in the bioreactor because of the inoculation?

Solutions:

a) In general, the OD value can be used in analogy to the concentration:

$$(2500 \text{ mL} + x \text{ mL}) * 0.1 = x \text{ mL} * 4.1$$

$$250 + 0.1x = 4.1x$$

$$x = 62.5 \text{ mL}$$

b)

2.5%

(Note: Ideally the percentile increase should be in the range of 1 to max 10%. I usually target for 2%).

Task 2

a) What will be the OD in the inoculated reactor after 10 h assuming you have a strain that finally grows exponentially with a $\mu_{\max} = 0.69 \text{ h}^{-1}$ after a lag phase at an $\text{OD}_{600} = 0.1$ for 4 h.

b) How much glucose would you have used up until 10 h when you know that the yield coefficient $Y_{\text{OD}(600)/\text{Glucose}}$ is 1.5 g^{-1} .

c) The strain produces propionate during growth. What would be the propionate concentration when you know the yield coefficient for propionate is $Y_{\text{Propionate}/\text{Glucose}} = 0.1 \text{ g g}^{-1}$? ($p_0 = 0 \text{ g L}^{-1}$)

Solution:

a) $x = x_0 * e^{\mu * (t - t(\text{lag}))}$

$x = \text{OD}_{600} = 6.28$

Solution:

b) General equation:

$$\Delta S = \frac{x - x_0}{Y_{X/S}} = \frac{6.28 - 0.1}{1.5}$$

4.12 g L^{-1} of glucose

(4.19 g L^{-1} is wrong)

Alternatively, we could also use this equation:

$$\Delta S = \frac{x_0}{Y_{X/S}} * (e^{\mu * (t - t(\text{lag}))} - 1)$$

Solution:

c)

$$p = p_0 + \frac{Y_P}{Y_{X/S}} * x_0 * (e^{\mu * (t - t(\text{lag}))} - 1)$$

0.412 g L^{-1} of propionate
(0.419 g L^{-1} is wrong)

Task 3

- a) What will be the specific growth rate of your strain ($\mu_{max} = 0.69 \text{ h}^{-1}$) when you know the K_s value is 0.2 g L^{-1} and you measure a glucose concentration in the supernatant that is 0.35 g L^{-1} ?
- b) What would be the substrate concentration when you determine a $\mu = 0.5 \text{ h}^{-1}$?

$$\mu = \mu_{max} \frac{s}{s+K_s} = 0.44 \text{ h}^{-1}$$

Solution:

$$\text{b) } s = \frac{K_s * \mu}{\mu_{max} - \mu}$$

0.526 g L^{-1} of glucose

Task 4

Stoichiometric limitation:

- What will be the maximum biomass (=OD600) that you can produce in a 2.5 L bioreactor with 40 g L⁻¹ of glucose when you know the yields are $Y_{\text{Propionate/Glucose}} = 0.1 \text{ g g}^{-1}$ and $Y_{\text{OD(600)/Glucose}} = 1.5 \text{ g}^{-1}$.
- What would be the yield $Y_{\text{Propionate/OD(600)}}$?

Solution:

a)

$$x_{max} \approx \frac{Y_X}{S} * s_0 = 40 * 1.5$$

$$\text{OD(600)} = 60$$

Solution:

b)

$$Y_{\text{Propionate/OD(600)}} = \frac{Y_{\text{Propionate/Glucose}}}{Y_{\text{OD(600)/Glucose}}} = 0.067 \text{ g/OD(600)}$$

Task 5

a) Analyze the graph to the right:
 Growth phases
 Limiting and non-limiting nutrients
 Any products?
 Where is PHA to be found (= Poly(3-hydroxyalkanoate), a bioplastic)?

b) Determine μ_{\max}

c) Determine growth yield $Y_{X/N}$

d) Calculate the specific uptake rate for N (q_N) in $\text{g g}^{-1} \text{h}^{-1}$

a) $\mu_{\max} = 0.38 \text{ h}^{-1}$

b) $Y_{X/N} = 5.1 \text{ g g}^{-1} (= 14 \text{ g/mM N})$

c) $q_N = 0.075 \text{ g g}^{-1} \text{ h}^{-1}$

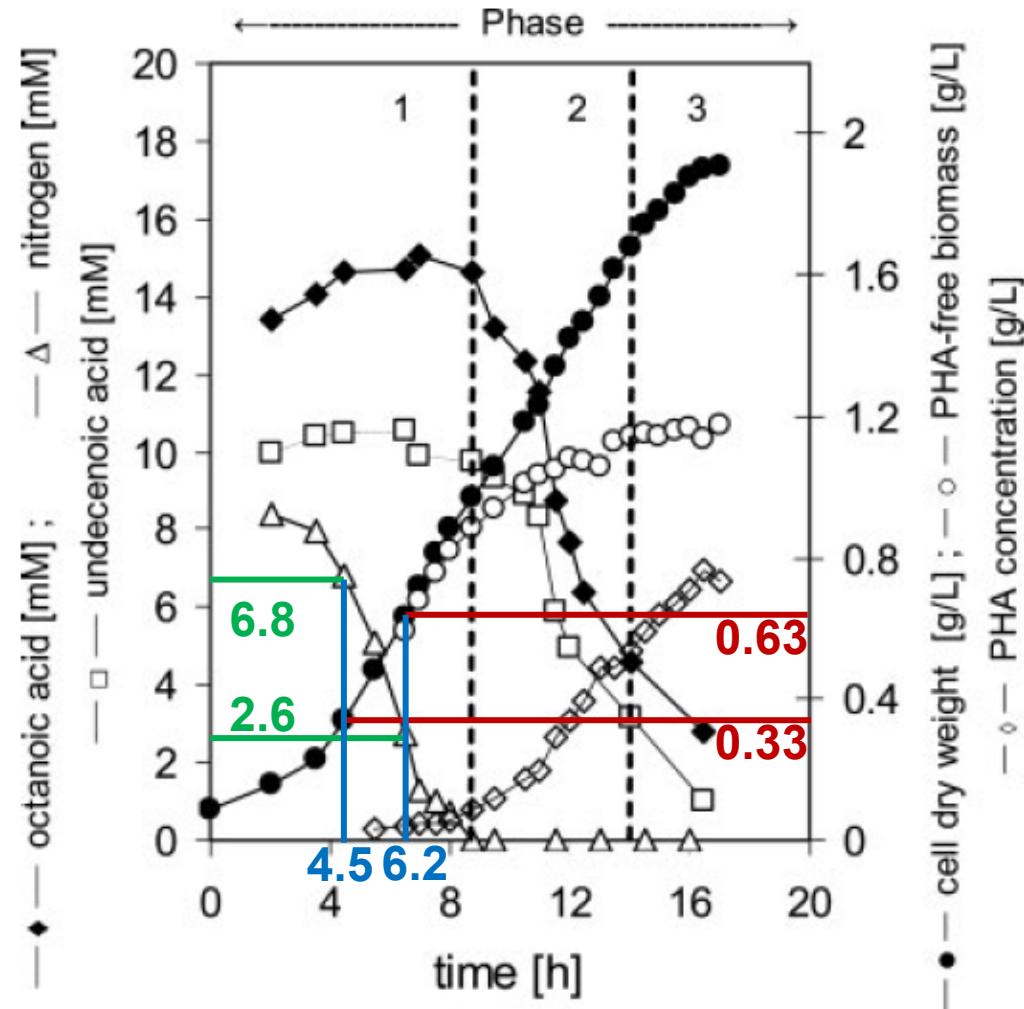


Figure 1. Accumulation of olefinic medium-chain-length polyhydroxy-alkanoates (mclPHAs) by *P. putida* GPo1 during batch growth with a mixture of octanoate (15 mM) and 10-undecenoate (11 mM).

Hartmann, R., et al., Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by *Pseudomonas putida* GPo1: Batch versus chemostat production. *Biotechnol. Bioeng.*, 2006. **93**(4): p. 737-746.

Task 6

a) What will be the cell dry weight in the inoculated reactor after 10 h assuming you have a strain that finally grows exponentially with a $\mu_{\max} = 0.69 \text{ h}^{-1}$ i) normally and ii) after a lag phase at an $x_0 = 0.1 \text{ g}$ for 4 h.

b) How much glucose would you have used up until 10 h when you know that the yield coefficient $Y_{X/\text{Glucose}}$ is 0.5 g g^{-1} .

c) The strain produces propionate during growth. What would be the propionate concentration after 10 h when you know the yield coefficient for propionate is $Y_{\text{Propionate}/\text{Glucose}} = 0.1 \text{ g g}^{-1}$? ($p_0 = 0 \text{ g L}^{-1}$)

Solution:

a)

$$x = x_0 * e^{\mu * t}$$

$$x = 99.23 \text{ g}$$

$$x = x_0 * e^{\mu * (t - t(\text{lag}))}$$

$$x = 6.28 \text{ g}$$

Solution:

b)

$$s = s_0 - \frac{x_0}{Y_{X/S}} * (e^{\mu * t} - 1)$$

$$99.1 \text{ g} \Rightarrow 198.26 \text{ g}$$

$$12.36 \text{ g of glucose}$$

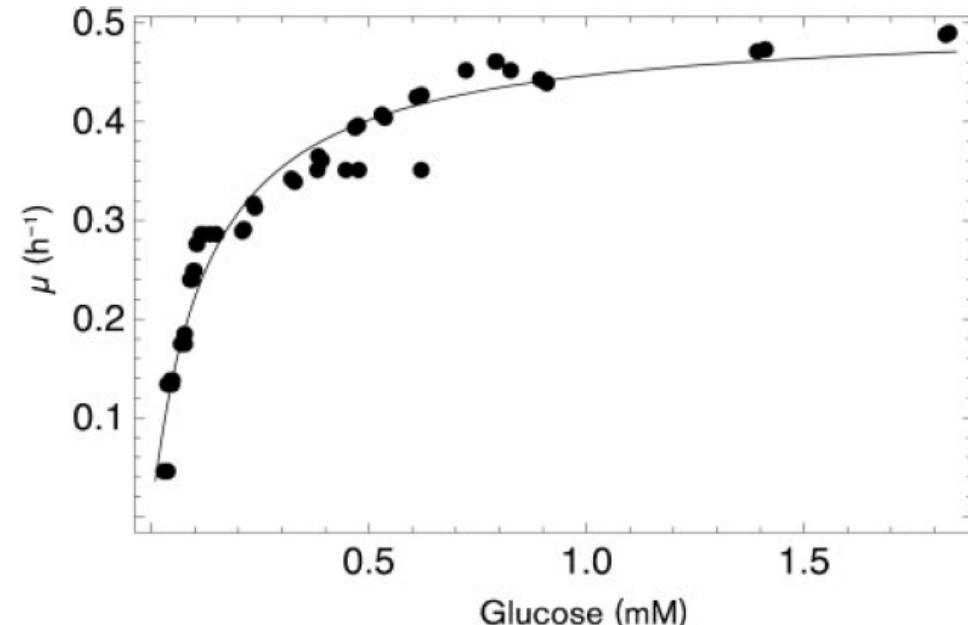
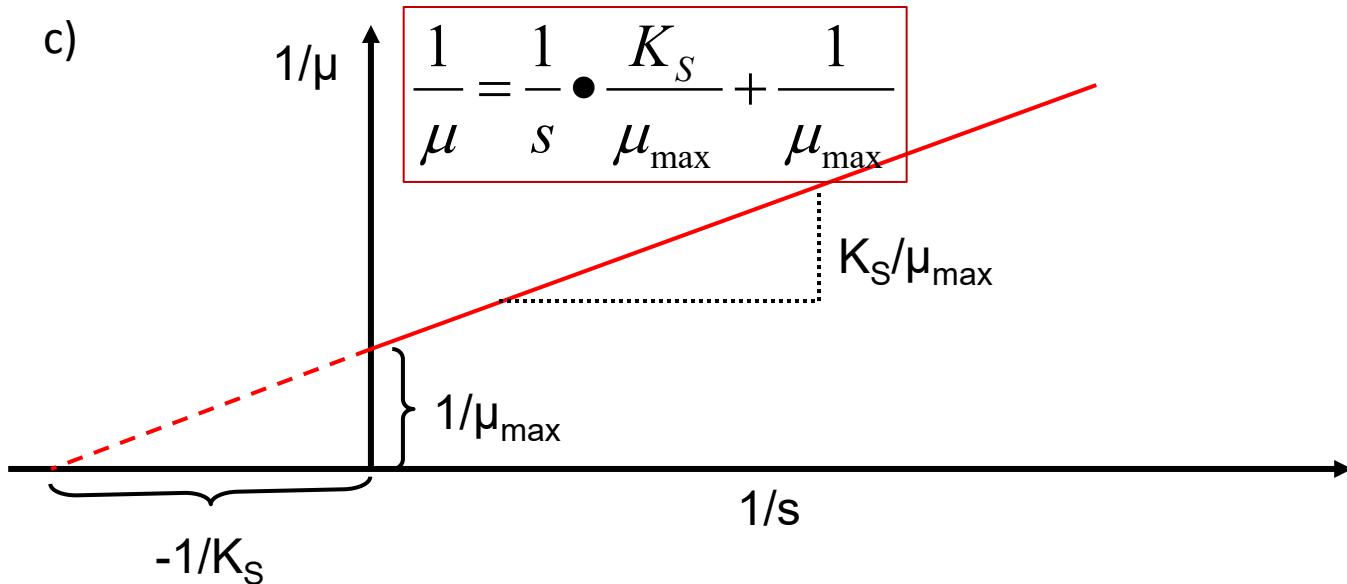
Solution:

c)

$$p = p_0 + \frac{Y_P}{Y_X} * \frac{S}{S} * x_0 * (e^{\mu * t} - 1)$$

$$19.826 \text{ g}$$

$$1.236 \text{ g of propionate}$$



Task 7

a) How were the data obtained for the figure to the right?

b) Determine graphically the K_s and the μ_{\max} values.

c) What other method could you use to determine these parameters?

a) Chemostat
 b) $K_s \approx 0.12 \text{ mM}$ (21.6 mg L^{-1}), $\mu_{\max} \approx 0.5 \text{ h}^{-1}$

Fig. 2. μ as a function of the residual substrate concentration. *S. cerevisiae* was grown over a range of D values and steady-state residual glucose concentrations were determined. The Monod curve is fitted through the data points.

Snoep, J.L., et al., *Microbiology* (2009), 155, 1699–1707

Task 8

How much of the nitrogen source do you have to add to a carbon-limited growth medium when you want to reach a maximum biomass of 50 g L^{-1} cell dry weight and the nitrogen source (NH_4Cl) should only be 1.1-fold in excess? How much nitrogen source do you have to add if you use KNO_3 instead of NH_4Cl ?

Answer:

- Required N for 50g of dry biomass $\text{L}^{-1} = 50 \text{ g L}^{-1} / Y_{X/N} = 50 / 8 = 6.25 \text{ g N L}^{-1}$
- This corresponds to $(6.25 \text{ g N L}^{-1} / \text{Mw N}) \times \text{Mw NH}_4\text{Cl} = 6.25 \text{ g N L}^{-1} / 14) \times 53.5 = \underline{\underline{23.88 \text{ g L}^{-1} \text{NH}_4\text{Cl}}}$
- N has to be 1.1-times in excess: $23.7 \text{ g NH}_4\text{Cl} \times 1.1 = \underline{\underline{26.27 \text{ g NH}_4\text{Cl L}^{-1}}}$
- If nitrate is used instead of ammonium chloride: $(6.25 \text{ g N L}^{-1} / \text{Mw N}) \times \text{Mw KNO}_3 = (6.25 \text{ g N L}^{-1} / 14) \times 101.1 = \underline{\underline{45.13 \text{ g KNO}_3 \text{L}^{-1}}}$
- With the excess factor of 1.1: 49.65 g KNO₃ L⁻¹

Task 9

M9 is probably the most widely used mineral medium to grow *E. coli*. It contains per litre:
Glucose 2 g, Na_2HPO_4 6 g, KH_2PO_4 3 g, NaCl 0.5 g, NH_4Cl 1 g, $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ 0.25 g, CaCl_2 7.6 mg.
Analyse and comment.

Answer:

- The medium lacks trace elements, particularly iron.
- We calculate the possible biomass that can theoretically be formed from the different elements,
e.g. for **carbon**: $(2 \text{ g glucose L}^{-1} / \text{MG glucose}) \times \text{MG C} \times 6 \times 1 = 0.8 \text{ g DW L}^{-1}$
from P: 66.3 g DW L⁻¹
from K: 86 g DW L⁻¹
from N: 2.08 g DW L⁻¹
from Mg: 4.93 g DW L⁻¹
from S: 3.25 g DW L⁻¹
from Ca: 0.275 g DW L⁻¹

This shows you that P and K are far in excess, N, Mg, S are roughly O.K. (3-5 times in excess) but **Ca is probably low** (increase at least 10-times).

The element with the lowest excess factor is N, hence by increasing glucose in the medium one is very quickly nitrogen-limited (already by adding 5 g L⁻¹ glucose).

Task 10

You have to treat wastewater from a fruit juice producing factory. It contains on average 30 g L^{-1} of easily degradable carbon compounds (mainly sugars $\text{C}_6\text{H}_{12}\text{O}_6$). The concentration of easily accessible nitrogen compounds in this wastewater is on average 0.5 g L^{-1} . What are the conclusions you draw from your analysis? Suggest solutions!

Answer:

- From 30 g L^{-1} of sugar one will obtain 12.0 g L^{-1} of DW ($30 \times (72/180) \times 1$)
- From the nitrogen that is easily available we can obtain 4.0 g L^{-1} of DW (0.5×8)
- This implies that the **carbon is far in excess** and will not be degraded because the treatment **plant is running nitrogen-limited**. The consequences are usually that this leads to the formation of filamentous bacteria that float on the surface and form so-called “bulking sludge”. As a solution one can **add a nitrogen-rich wastewater**, e.g. from a slaughter house.
- You can now also predict how much additional nitrogen you would have to add.

Task 11

You grow an obligate aerobic bacterial strain with a water soluble but volatile carbon source in closed glass bottles (volume 100 ml) with a mineral medium that allows cell densities of up to 5 g DW L⁻¹. The total amount of carbon supplied is 0.5 g L⁻¹ and the total amount of growth medium in the bottle is 20 ml. The headspace of the bottle is filled with O₂. Is there sufficient oxygen in the headspace such that all carbon will be utilized? Assume a yield factor for molecular oxygen of 30 g DW (mol O₂)⁻¹. (Please ask if you need more information?)

Answer:

- In 20 ml of medium the dry biomass that will be produced from the carbon is

$$0.5 \text{ gC L}^{-1} \times (20\text{ml}/1000\text{ml}) \times 1 = \mathbf{0.01 \text{ g DW}}$$

- From the oxygen available one can form the following amount of dry biomass:

$$(1 \text{ mol O}_2 / 22'400 \text{ mL}) \times 80 \text{ ml} \times 30 \text{ g DW/mol O}_2 = \mathbf{0.1086 \text{ g DW}}$$

Hence, there is **sufficient oxygen** in the headspace and all the carbon can be degraded by the culture.